
PyStark
Release 2022

StarkProgrammer

Jan 17, 2022

INTRODUCTION

1 Try out PyStark 3

2 How the Documentation is Organized 5

3 Easy mantra to use this documentation 7
3.1 Quick Start . 7
3.2 Installation . 8
3.3 Generating Boilerplate . 9
3.4 Mandatory Variables . 10
3.5 Creating Plugins . 11
3.6 Customization . 12
3.7 Run Bot Locally . 13
3.8 Using Databases . 13
3.9 Frequently Asked Questions . 15

i

ii

PyStark, Release 2022

PyStark is a fast, easy-to-use tool for creating Telegram bots in Python that is completely powered by Pyrogram, one
of the best MTProto Frameworks available.

This documentation is designed primarily for absolute beginners, keeping in mind the specific needs of all major
operating systems.

INTRODUCTION 1

https://github.com/pyrogram/pyrogram

PyStark, Release 2022

2 INTRODUCTION

CHAPTER

ONE

TRY OUT PYSTARK

Not convinced to use PyStark? Try it out first, using few small steps given in the quick-start section.

• Quick Start: Overview to get you started quickly.

3

PyStark, Release 2022

4 Chapter 1. Try out PyStark

CHAPTER

TWO

HOW THE DOCUMENTATION IS ORGANIZED

• Installation: Overview to get you started quickly.
• Boilerplate: Generate a boilerplate
• Mandatory Variables: Setup the needed variables

for bot
• Customization: Easily customize your bot.

• Creating Plugins: Code your own plugins
• Run Bot: Run your bot locally
• Using Databases: Use various databases with

pystark

5

PyStark, Release 2022

6 Chapter 2. How the Documentation is Organized

CHAPTER

THREE

EASY MANTRA TO USE THIS DOCUMENTATION

Just tap on Next button below every page, keep reading while following the steps whenever necessary. That’s it.

3.1 Quick Start

Following these steps will allow you to see PyStark in action as quickly as possible.

Note: Installation of Python with version 3.6 or above is required.

3.1.1 Steps

1. Open up your terminal.

2. Install PyStark with pip:

$ pip3 install pystark

3. Generate a boilerplate using PyStark’s command-line tool.

$ pystark --boilerplate

4. Open the file manager in current directory.

5. Edit the .env file and fill your API_ID, API_HASH and BOT_TOKEN. Get the API keys from my.telegram.org
and bot token from BotFather

6. Change the default values of messages in data.py.

7. Run the bot using python:

$ python3 bot.py

7

my.telegram.org
https://telegram.me/BotFather

PyStark, Release 2022

3.1.2 What does this do?

The above steps will help you set up your bot and run it. You can use the command /start to check if your bot is actually
running.

Your bot now has four default commands:

• /start - Start the bot.
• /help - See a help message for the bot.

• /about - About the bot.
• /id - Get Telegram ID (also works in groups)

You can change the messages for all commands in data.py file.

3.2 Installation

This guide will show you how to install PyStark. Be sure to keep an eye out for new releases and keep upgrading the
library.

Contents

• Installing PyStark

• Using Beta Version

• Upgrading pre-installed PyStark

3.2.1 Installing PyStark

PyStark is available on PyPI and it’s latest stable version can be installed using pip:

$ pip3 install pystark

3.2.2 Using Beta Version

Note: Features are almost always released as soon as they have been committed and checked. So there will be little
difference even if the package is installed with pip.

When you install from the git master branch, you will be able to install the beta versions of the new features. You can
do that using this command:

$ pip install git+https://github.com/StarkBotsIndustries/pystark.git

8 Chapter 3. Easy mantra to use this documentation

PyStark, Release 2022

3.2.3 Upgrading pre-installed PyStark

Being a new library, we keep updating PyStark. You can check for new releases on PyPI. Thus, you will be able to use
new features of PyStark. Here’s how to upgrade, if you have pre-installed PyStark:

$ pip install --upgrade pystark

3.3 Generating Boilerplate

PyStark comes with a command line tool to make everything even more simpler. You can easily generate a boilerplate
to get started. You can also create a boilerplate with added Heroku support. Isn’t that amazing?

Contents

• What is a boilerplate ?

• Generating a boilerplate to run locally

• Generating a boilerplate with Heroku Support

3.3.1 What is a boilerplate ?

Boilerplate Code or Boilerplate refers to sections of code that have to be included in many places with little or no
alteration.

While using PyStark some code will be same for all bots. Our tool will help you to generate that much code, so you
don’t have to code and it makes it easier to use PyStark. When you will generate a boilerplate using pystark, a folder
with some files will be created for you.

You can choose to generate a boilerplate with or without Heroku Support. For first-timers, I recommend try using
without Heroku Support which can be run locally.

3.3.2 Generating a boilerplate to run locally

For generating a boilerplate for local deployment, run this command:

$ pystark --boilerplate

A folder named boilerplate will be created for you in that folder.

3.3. Generating Boilerplate 9

PyStark, Release 2022

3.3.3 Generating a boilerplate with Heroku Support

For added Heroku support, run this command:

$ pystark --boilerplate-heroku

A folder named boilerplate will be created for you in that folder.

3.4 Mandatory Variables

Note: Never disclose these keys to anyone!

Contents

• API Keys

• Bot Token

• Filling the Variables

• Non-mandatory Variables

3.4.1 API Keys

API Keys are one of the most important needed keys to work with any MTProto Framework. They include a API_ID
and API_HASH.

You can get these from my.telegram.org

3.4.2 Bot Token

Bot Token is a specific token for every telegram bot. You will get it when you create a new bot using BotFather

It should be filled as BOT_TOKEN

3.4.3 Filling the Variables

• For Local Deploy - fill them in .env file.

• For Heroku Deploy - fill them after you tap on Deploy to Heroku button on your repository.

10 Chapter 3. Easy mantra to use this documentation

https://my.telegram.org
https://t.me/BotFather

PyStark, Release 2022

3.4.4 Non-mandatory Variables

• CMD_PREFIXES - prefixes for commands (defaults to “/”). For multiple prefixes, specify multiple together like
“/.*”

• OWNER_ID - Your Telegram ID

• TIMEZONE - “Asia/Kolkata”

• DATABASE_URL - for PostgreSQL database

• REDIS_URL - for Redis database (public endpoint)

• REDIS_PASSWORD - for Redis database

3.5 Creating Plugins

Some Python knowledge is required to create plugins in general. Therfore, I highly recommend you to learn Python
first.

Note:

• All plugins must be added to the plugins folder.

• Plugins must end with .py extension

Here’s a sample code for a new plugin

Import class 'Stark' in every plugin
from pystark import Stark, Message

use 'Stark.cmd' decorator to create commands
@Stark.cmd('name', owner_only=False, extra_filters=None, group=0) - defaults

@Stark.cmd('sample') # or @Stark.command('sample')
async def sample_function(bot: Stark, msg: Message):

'msg.react()' is 'msg.reply()' with del_in added argument
await msg.react('This will be the reply when /sample is sent.')

But anyway, you can create easier plugins like text plugins with no python knowledge whatsoever.

from pystark import Stark

@Stark.cmd('command_name')
async def text_plugin(bot, msg):

text = 'your text here'
await msg.react(text)

For example, below plugin has a command /greet and the bot will reply with Welcome to the Bot

from pystark import Stark

(continues on next page)

3.5. Creating Plugins 11

PyStark, Release 2022

(continued from previous page)

@Stark.cmd('greet')
async def text_plugin(bot, msg):

text = 'Welcome to the Bot'
await msg.react(text)

3.6 Customization

There are a lot of customization options in PyStark to customize the behavior of your bot.

Contents

• Change the default messages

• Remove the default plugins

• Rename the plugins directory

3.6.1 Change the default messages

PyStark comes with in-built plugins like start and help. But what if you want to have different messages than the
in-built ones? They are easily customizable.

After you have finished generating a boilerplate, you will see a file named data.py. You can change it’s values to
change the default messages.

Special Keywords - You may want to mention user or bot in start or help messages. You can use special keywords
to do that. They will be replaced at runtime and will be different for all users.

• {user} - User’s first name

• {bot} - Bot’s name

• {user_mentions} - User mention as a hyperlink

• {bot_mentions} - Bot mention as a hyperlink

• {owner} - Owner mention (only works if OWNER_ID is set else @StarkBots)

So let’s say your startmessage is set to Hi {user} and your first name on telegram is Stark then bot will send Hi Stark.

3.6.2 Remove the default plugins

PyStark comes with four in-built plugins. To remove this you need to edit bot.py. Use default_plugins=False
while calling the activate function.

You will see this:

Stark().activate()

Change that to this:

12 Chapter 3. Easy mantra to use this documentation

PyStark, Release 2022

Stark().activate(default_plugins=False)

3.6.3 Rename the plugins directory

You may notice that if you rename the plugins directory, the plugins won’t load. To fix this you need to pass the name
of your plugins directory to the activate function. Open bot.py.

You will see this:

Stark().activate()

Change that to this:

Stark().activate(plugins="name of plugins folder")

Let’s say I renamed the plugins folder to files. Then I should do this:

Stark().activate(plugins="files")

3.7 Run Bot Locally

You can run your bot using simple python.

• First go to your folder using cd

• Then run bot.py

$ python3 bot.py

• You can also run your bot in any IDE like PyCharm or VS Code. Just run the bot.py file.

3.8 Using Databases

You can use any database you wish with PyStark, but we have provided a simple default setup for some databases, such
as PostgreSQL and Redis, to make them even easier to use. By following this guide, you will have a basic understanding
of how to use them.

Note: This feature is still in beta. There are a lot of things to do like adding global functions, default classes, alembic
support for sqlalchemy, etc and this is just a pre-release.

Contents

• PostgreSQL (using sqlalchemy)

• Redis (using redis-py)

• MongoDB

3.7. Run Bot Locally 13

PyStark, Release 2022

3.8.1 PostgreSQL (using sqlalchemy)

• Database URL - You need to add DATABASE_URL to .env. If you are using Heroku boilerplate, leave it to
Heroku and pystark. Otherwise, you can get a Database URL from ElephantSQL

• Creating Tables - You need to create all the tables with all columns you need. In Python, using Classes.

Below is a code example for a table named users with 3 columns named user_id, name, and aim:

Import 'Base' and 'Session' already made by pystark
from pystark.database.postgres import Base, Session
Import basic sqlalchemy classes
from sqlalchemy import Column, Integer, String

Every class should inherit from 'Base'
class Users(Base):

__tablename__ = "users"
__table_args__ = {'extend_existing': True}
user_id = Column(Integer, primary_key=True) # sql pk
name = Column(String)
aim = Column(String)

def __init__(self, user_id, name, aim=None):
self.user_id = user_id
self.name = name
self.aim = aim

Create Table
Users.__table__.create(checkfirst=True)

• Querying Tables - You can query tables using Session object.

import 'Session' object
from pystark.database.postgres import Session
import Python class for respective table
let's say it is in 'users_sql.py' inside 'database' folder.
from database.users_sql import Users

This function gives total 'rows', that is total user ids in 'users' table.
def num_users():

users = Session.query(Users).count()
close session after all queries are made.
Session.close()
return users

This function returns 'name' and 'aim' for users by using 'user_id'
def get_name_and_aim(user_id):

query = Session.query(Users).get(user_id)
name = query.name # get name
aim = query.aim # get aim
Session.close()

(continues on next page)

14 Chapter 3. Easy mantra to use this documentation

http://www.elephantsql.com

PyStark, Release 2022

(continued from previous page)

return (name, aim)

This function sets name and aim for users by using 'user_id'
def set_name_and_aim(user_id, name, aim):

query = Session.query(Users).get(user_id)
query.name = name # set name
query.aim = aim # set aim
Session.commit() # use this after setting anything.
Now you don't need to 'Session.close()' as you used 'Session.commit()' already.

Etc

3.8.2 Redis (using redis-py)

• Variables - You need to set `REDIS_URL (public endpoint) and REDIS_PASSWORD by creating a database at
redislabs.com

• Setting and Getting key-value pairs

from pystark.database.redis_db import redis

redis.set('Agra', 'Taj Mahal')

redis.get('Agra')

b'Taj Mahal'

3.8.3 MongoDB

Coming soon.

3.9 Frequently Asked Questions

Contents

• What is PyStark?

• Where to run commands?

• How to open file manager in current directory?

3.9. Frequently Asked Questions 15

https://redislabs.com

PyStark, Release 2022

3.9.1 What is PyStark?

• PyStark is a spoon-feeding not-even-library based on Pyrogram.

• Pyrogram is a spoon-feeding MTProto Framework made in Python.

• Python is a spoon-feeding programming language.

3.9.2 Where to run commands?

This means that you are an absolute beginner.

• If you are using Windows, tap on Start button and search for cmd or Command Prompt.

• If you are using MacOS or Linux, search for Terminal.

3.9.3 How to open file manager in current directory?

• For Windows use the start command:

$ start .

• For MacOS use the open command:

$ open .

• For Linux use the xdg-open command:

$ xdg-open .

The dot (.) after command is required to open in current directory.

16 Chapter 3. Easy mantra to use this documentation

	Try out PyStark
	How the Documentation is Organized
	Easy mantra to use this documentation
	Quick Start
	Steps
	What does this do?

	Installation
	Installing PyStark
	Using Beta Version
	Upgrading pre-installed PyStark

	Generating Boilerplate
	What is a boilerplate ?
	Generating a boilerplate to run locally
	Generating a boilerplate with Heroku Support

	Mandatory Variables
	API Keys
	Bot Token
	Filling the Variables
	Non-mandatory Variables

	Creating Plugins
	Customization
	Change the default messages
	Remove the default plugins
	Rename the plugins directory

	Run Bot Locally
	Using Databases
	PostgreSQL (using sqlalchemy)
	Redis (using redis-py)
	MongoDB

	Frequently Asked Questions
	What is PyStark?
	Where to run commands?
	How to open file manager in current directory?

